Tough-Displacement Without Movement

placeholder name

placeholder affiliation

Introduction. This paper proposes a new approach to tough-constructions (TCs) like (1), in which the matrix subject of a typical predicate (tough, easy etc.) is associated with a gap in embedded object position. On the basis of German elements that cannot move but can still partake in TCs, I develop a novel account in which the embedded CP layer is removed (Müller 2017a,b; Pesetsky 2016) and a DP in former Spec,CP can reach the matrix clause without violating the Improper Movement constraint, which bans movement of an XP from an A′ into a non-A′ position.

(1) Johni is easy \([CP \text{ to please } _{-i}]\).

Status quo. Two families of accounts have been proposed: LONG MOVEMENT (LM) accounts suppose that a DP moves from the embedded object position to the matrix subject position via Spec,CP (i.a. Rosenbaum 1967, Hicks 2009, Longenbaugh 2017, see (2a)); the BASE GENERATION family (BG), proposes that an (empty) operator A′-moves from the object position to the edge of the embedded CP, while the subject is base-generated in the matrix clause and semantically linked to the operator (i.a. Chomsky 1981, Rezac 2006, Keine & Poole 2016, see (2b)).

(2) a. \([DP_i \ldots \text{tough} \ldots [CP \ldots V \ldots _{-i}]]\)
 b. \([DP \ldots \text{tough} \ldots [CP Op_i \ldots V \ldots _{-i}]]\)

Evidence for LM approaches includes anaphor reconstruction into the embedded gap (Hicks 2009, Longenbaugh 2017) and the possibility of intervention in the movement chain (if intervention effects are syntactic as in Hartman 2011, Longenbaugh 2015, but see Keine & Poole 2016 for a semantic type mismatch analysis), which BG approaches cannot account for easily.

Problems of LM. However, LM accounts face two problems: conceptually they violate the Improper Movement constraint; empirically, while German also shows evidence for LM (parallel reconstruction and anaphor binding behaviour), there are certain data that these analyses cannot account for: as (3) shows, indefinite pronouns in German cannot be scrambled i.e. moved in the middle field (Geilfuss 1991), but they can be part of TCs.

(3) a. *... dass wasi einer _{-i} hört*
 b. *... dass was schwer zu hören ist*
 ... that something hard to hear is

This suggests an alternative analysis without movement from the embedded into the matrix clause.

Analysis. The core idea of the analysis is that the DP merged as the embedded object and wh-moved to Spec,CP, can reach an A-position in the matrix clause not by moving there (thus violating Improper Movement), but by the independently motivated reassociation mechanism that follows the removal of embedded C (Müller 2018). The derivation proceeds as follows: an object DP is merged in the embedded infinitival. This DP moves intermediately into Spec,CP. The tough-predicate is merged. It contains \([-C_0-]\), a feature that triggers removal of C_0_. When C_0_ and its projection are gone, the DP is un-associated from the structure and subsequently reassociated as the specifier of the tough-predicate. This is the crucial step of the derivation. The DP ends up in a matrix non-A′-position without moving into it. Reassociation into Spec,AP is forced by the Strict Cycle Condition: reassociation as, e.g., Spec,TP would violate the SCC, since the DP originated in a position in which it c-commanded TP. These hierarchical relations in structure already formed must be retained. From its new position, it can A-move into subject position.

Conclusion. By syntactically removing the embedded CP layer, a DP in former Spec,CP is automatically transported into a matrix clause position, thereby circumventing a violation of the Improper Movement constraint. This analysis of TCs can account for the discrepancies in German scrambling data while still encompassing the original arguments for LM accounts.